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Abstract
We show that the state with the highest known average two-particle von
Neumann entanglement entropy proposed by Sudbery and one of the authors
gives a local maximum of this entropy. We also show that this is not the case
for an alternative highly entangled state proposed by Brown et al.

PACS numbers: 03.67.Mn, 03.65.Ta, 03.65.Ud, 03.65.Db

1. Introduction

The characterization of multi-particle entanglement is a major open problem that is particularly
significant for the study of quantum computation and many-body physics [1]. One of the ways
in which entanglement can be understood is by way of reference to a ‘maximally’ entangled
state. This target state can then be used, for example, to determine the largest rate at which
it is possible to distill pure maximally entangled states from a supply of mixed states using
only LOCC [2]. An obvious condition for maximal entanglement in the case of pure states
is that all one-qubit-reduced density matrices are maximally mixed. For two- and three-qubit
systems this leads to a unique state [3] (up to local unitary operations). However this is not
true for a system with more than three qubits. For example, the states

|φ1〉 = 1√
2
(|0000〉 + |1111〉)

|φ2〉 = 1
2 (|0000〉 + |0111〉 + |1001〉 + |1110〉)

have the property that all one-party-reduced density matrices are maximally mixed; yet these
two states are not locally equivalent. One may then ask which states also have maximally
mixed two-party-reduced density matrices. However, Sudbery and one of the authors (AH)
have shown that it is not possible for all two-qubit-reduced density matrices of a pure four-
qubit state to be maximally mixed [4]. Nevertheless, they found a state which appears to
maximize the average von Neumann entropy of two-qubit-reduced density matrices, which
will be denoted by E2 in this paper. They showed that this state is a stationary point of the
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function E2, but it is not known whether this state indeed gives the maximum of E2. In this
paper we show that this state gives at least a local maximum of E2.

Given four qubits A,B,C and D the von Neumann entropy of the two-party-reduced
states is

EXY = −tr(ρXY log2 ρXY ), (1)

where ρXY = trZW |ψ〉〈ψ | with W,X, Y,Z being a permutation of the four systems. The
average entropy of two-qubit-reduced density matrices is defined by

E2 ≡ 1
6 (EAB + EAC + EAD + EBC + EBD + ECD)

= 1
3 (EAB + EAC + EAD).

This quantity can naturally be taken as a measure of the entanglement between two pairs in
pure four-qubit states.

There are other approaches to quantifying multi-partite entanglement that are applicable
to a general mixed state. A measure for a general composite system has been introduced by
Yukalov [5] using the ratio of norms of an entangling operator and of a disentangling operator
in the relevant disentangled Hilbert space. The entanglement of a four-qubit system can also
be studied using the entropy of the reduced three-particle system and the strong subaddativity
inequality [6]. Brown et al have considered the partial transpose with respect to all possible
partitions of the state [7]. These measures are more general than E2 in so much as they are
applicable to mixed states. In this paper, we only consider pure states and, therefore, the
average entropy is a suitable measure of entanglement.

The four-qubit state proposed in [4],

|M4〉 = 1√
6
[|0011〉 + |1100〉 + ω(|0101〉 + |1010〉) + ω(|0110〉 + |1001〉)],

where ω = exp(2iπ/3) is a third root of unity, has the highest known average two-qubit
bipartite entanglement [4, 7]. It is also an element of the orbit of SLOCC operations that has
maximal four-partite entanglement [8]. Together with its complex conjugate, it also provides
a basis for the space of singlets contained in a four-qubit Hilbert space [9].

The entropy EXY measures the entanglement between systems XY and WZ, i.e. it
measures entanglement between pairs. The entropy of the one-party-reduced density matrices
measures the entanglement between individual systems and the rest of the state. Another
way in which entanglement could manifest itself in a four-qubit system is the entanglement
between any two individual systems. For example, the entanglement between X and Y is
measured by regarding ρXY as a (mixed) state in its own right. There are various bipartite
entanglement measures for mixed states. One that is commonly used for multipartite states is
the concurrence, since for this measure there is an inequality, the CKW inequality, which
gives an upper bound on the bipartite entanglement in terms of one-party entanglement
[10, 11]. Namely

C2
AB + C2

AC + C2
AD � C2

A(BCD), (2)

where CA(BCD) denotes the concurrence across the partition A : BCD, where the qubits BCD

are regarded as one eight-dimensional qudit. Since ρABCD = |M4〉〈M4| is pure, one has
CA(BCD) = 2

√
det(ρA) = 1.

It is interesting to note that |M4〉 contains no bipartite entanglement, that is, ρAY is
separable1 for all Y. Moreover, the states ρAY are on the boundary of separable states. This
can be seen by writing ρAY in the form

ρAY =
(
1 − 1

3

)
4

I +
1

3
|�−〉〈�−|,

1 ρAY is a mixed state, and so separability here means that it can be written as the convex sum of unentangled pure
states.
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where |�−〉 = 1√
2
(|01〉 − |10〉), i.e. as a Werner state with x = 1

3 [12, 13]. Therefore, the
left-hand side of equation (2) is zero while the right-hand side is one. This can be thought
of as saying that A shares none of its entanglement with its neighbours, i.e. the entanglement
between AY and WZ does not come from the separate entanglement of A with W or Z in the
state |M4〉.

The authors of [4] conjectured that |M4〉 gives a maximum of the average two-qubit
bipartite entanglement. By considering the first variation, δEXY , they were able to show that
E2 is stationary at |M4〉. In this paper, we will consider the second variation of the average
entropy and demonstrate that the state |M4〉 indeed gives a local maximum. We will also
consider another highly entangled state proposed in [7] and show that this state is in fact not a
stationary point of our measure, thus illustrating that maximal entanglement is dependent on
the measure used.

2. Varying the entropy

We consider variations of the state near |M4〉 with the varied states characterized by several
small parameters. In general, suppose we vary a four-qubit state |ψ〉 in second-order
approximation as

|ψ〉 → |ψ ′〉 = |ψ〉 + |δψ〉 + |δ2ψ〉,
where |δψ〉 and |δ2ψ〉 are of first and second orders, respectively, in the small parameters
characterizing the variations. From the normalization condition 〈ψ ′|ψ ′〉 = 〈ψ |ψ〉 = 1, we
obtain

2 Re〈δψ |ψ〉 = 0 (3)

at first order and

2 Re〈δ2ψ |ψ〉 + 〈δψ |δψ〉 = 0 (4)

at second order.
In order to find the first and second variations of the entropy, we need the following

lemma.

Lemma 2.1. For any function f (A) of a matrix A that can be written as a power
series, consider variations of A with small parameters, A �→ A + δA + δ2A, to second
order in these parameters. Then to second order the corresponding variation tr[f (A)] �→
tr[f (A)] + δtr[f (A)] + δ2tr[f (A)] is given by

δtr[f (A)] = tr[δA · f ′(A)],

δ2tr[f (A)] = tr
[
δ2A · f ′(A) + 1

2δA · δf ′(A)
]
.

Proof. Since f (A) can be written as a power series, it is enough to show these formulae for
f (A) = An. We obtain first-order terms in the variation of An by replacing one of the A’s by
δA. Thus, δ trAn = n tr[δA · An−1]. This proves the first formula. We get second-order terms
by replacing one of A’s by a δ2A or by replacing two A’s by two δA’s. Thus,

δ2trAn = ntr[δ2A · An−1] +
n

2

n−2∑
k=0

tr[δA · Ak · δA · An−k−2]

= tr[δ2A · nAn−1] +
1

2
tr[δA · δ(nAn−1)].
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(One can perhaps convince oneself of the need for the factor 1/2 in the second term by noting
that the number of ways to replace two A’s by two δA’s is n(n−1)/2.) This proves the second
formula. �

Letting A = 1 − ρXY and f (A) = (1 − A) log(1 − A) = ρXY log ρXY in this lemma,
and using the normalization conditions tr[δρXY ] = tr[δ2ρXY ] = 0, we obtain the first- and
second-order variations of EXY defined by (1) as

δEXY = − 1

log 2
tr[δρXY log ρXY ], (5)

δ2EXY = − 1

log 2
tr

[
δ2ρXY log ρXY +

1

2
δρXY δ log ρXY

]
, (6)

where

ρXY = trZW(|ψ〉〈ψ |),
δρXY = trZW(|δψ〉〈ψ | + |ψ〉〈δψ |),
δ2ρXY = trZW(|δ2ψ〉〈ψ | + |ψ〉〈δ2ψ | + |δψ〉〈δψ |).

3. An alternative highly entangled state

In [7], Brown et al have considered multi-partite entanglement across all possible partitions of
a state and calculated the sum of all negative eigenvalues when the partial-transpose function
is applied and sought to maximize this over all possible states. In the four-qubit case, their
numerical search found the state

|ψ4〉 = 1
2 (|0000〉 + |+011〉 + |1101〉 + |−110〉),

where |+〉 = 1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). Here we consider whether the state |ψ4〉

gives a local maximum of E2 as a measure of entanglement.
We start by noting that ρAC is maximally mixed and that the eigenvalues of ρAB and ρAD

are both equal to{
2 +

√
2

8
,

2 +
√

2

8
,

2 − √
2

8
,

2 − √
2

8

}
.

Comparing the average two-qubit entanglement of this state with that of |M4〉, we see that the
state |ψ4〉 has lower two-party average von Neumann entanglement [7]. Namely

E2(|ψ4〉) = 5
2 − 1

2
√

2
log2 (3 +

√
2) ≈ 1.7426,

E2(|M4〉) = 1 + 1
2 log2 2 ≈ 1.7925.

We will now show that the state |ψ4〉 in fact does not give a local maximum of E2 by
demonstrating that it is not a stationary point. The first-order variation of E2 is given by

3δE2 = δEAB + δEAC + δEAD.

Since ρAC is maximally mixed, we have δEAC = 0 by (5) and the first-order normalization
condition. In order to diagonalize ρAB and ρAD we use the bases {|u±〉, |v±〉} and {|w±〉, |x±〉},
respectively, where

|u±〉 = (
√

2 ∓ 1)|10〉 ± |00〉, |v±〉 = (
√

2 ± 1)|11〉 ∓ |01〉,
|w±〉 = (

√
2 ∓ 1)|10〉 ∓ |00〉, |x±〉 = (

√
2 ± 1)|11〉 ± |01〉.
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Therefore we can now write

ρAB = ρAD = 1

8




2 +
√

2

2 − √
2

2 +
√

2

2 − √
2




= (2 −
√

2)
I

8
+

√
2

4




1
0

1
0


 .

Hence, by (5) and the normalization condition,

δE2 ∝ tr[δρAB(|u+〉〈u+| + |v+〉〈v+|) + δρAD(|w+〉〈w+| + |x+〉〈x+|)]
= 〈u+|δρAB |u+〉 + 〈v+|δρAB |v+〉 + 〈w+|δρAD|w+〉 + 〈x+|δρAD|x+〉.

Consider a variation of the form

|δψ〉 = α|0011〉 + β|1011〉.
Then the normalization condition requires that Re{α + β} = 0. We find

δρAB = 1√
2
(|00〉 + |10〉)(α〈00| + β〈10|) + 1√

2
(α|00〉 + β|10〉)(〈00| + 〈10|),

and hence

〈u+|δρAB |u+〉 = 2Re[α + β(
√

2 − 1)],

〈v+|δρAB |v+〉 = 0.

Similarly,

〈w+|δρAD|w+〉 = 0,

〈x+|δρAD|x+〉 = 2Re[α(
√

2 + 1) + β(2
√

2 + 3)].

Therefore, for the variations considered here we have

δE2 ∝ Re[α(2 +
√

2) + β(2 + 3
√

2)].

Hence, by putting α = −β = ε for a small ε ∈ R—note that the normalization condition
Re(α + β) = 0 is satisfied—we have δE2 �= 0. Therefore the state |ψ4〉 cannot give a local
maximum of E2.

4. The second-order variations

We now return to the state |M4〉 and show that it gives a local maximum of E2, that is,
δ2EAB + δ2EAC + δ2EAD < 0. Let us write δ2ρXY = κXY + σXY , where

σXY = trWZ(|δψ〉〈δψ |),
κXY = trWZ(|δ2ψ〉〈ψ | + |ψ〉〈δ2ψ |).

Then,

− log 2
∑
Y

δ2EAY =
∑
Y

tr

(
κAY log ρAY + σAY log ρAY +

1

2
δρAY δ log ρAY

)
, (7)

where Y = B,C and D. Our task now is to show that the right-hand side of this equation is
positive definite for all nontrivial variations of the state |ψ〉 = |M4〉 satisfying the normalization
conditions (3) and (4). We will deal with each term in (7) separately.
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4.1. The first two terms in the expansion

We note that log ρAY = log 3 · |�−〉〈�−| − log 6 · I, where |�−〉 = 1√
2
(|10〉 − |01〉), for all

Y, and that

tr(κAB |�−〉〈�−|) = Re(〈δ2ψ |ψ〉 − 〈δ2ψ |ψ〉),
tr(κAC |�−〉〈�−|) = Re(〈δ2ψ |ψ〉 − ω〈δ2ψ |ψ〉),
tr(κAD|�−〉〈�−|) = Re(〈δ2ψ |ψ〉 − ω〈δ2ψ |ψ〉),

where |ψ〉 is the complex conjugate of |ψ〉 = |M4〉 in the computation basis, as was shown
in [4] in the context of first-order variation. Hence, using the normalization condition (4), we
find the first term of (7) as∑

Y

tr(κAY log ρAY ) = 3 log 2
√

3 · 〈δψ |δψ〉.

We now consider the second term in (7). We have

tr(σXY log ρXY ) = tr(σXY log 3 · |�−〉〈�−| − σXY log 6 · I)
= log 3 · tr[( trWZ|δψ〉〈δψ |)|�−〉〈�−|] − log 6 · 〈δψ |δψ〉

= log 3
1∑

i,j=0

|(〈�−|XY 〈ij |WZ)|δψ〉|2 − log 6 · 〈δψ |δψ〉.

Hence, ∑
Y

tr(σAY log ρAY ) = −3 log 6 · 〈δψ |δψ〉 + FAB + FAC + FAD,

where

FXY = log 3
1∑

i,j=0

|(〈�−|XY 〈ij |WZ)|δψ〉|2.

Thus ∑
Y

tr[(κAY + σAY ) log ρAY ] = −3 log
√

3 · 〈δψ |δψ〉 + FAB + FAC + FAD

� −3

2
log 3 · 〈δψ |δψ〉,

because FAB + FAC + FAD � 0. This motivates us to define

P ≡
∑
Y

tr[δρAY δ log ρAY ] − 3 log 3 · 〈δψ |δψ〉. (8)

Then, if P > 0 for all nontrivial variations, δ2E2 is negative definite and the state |M4〉 gives
a local maximum of E2. We will show this fact with a certain convenient parametrization of
variations.

4.2. The third term in the expansion

The following lemma will be useful in analysing the variation δ log ρXY .

Lemma 4.1. Provided that the eigenvalues of A are positive and less than 1, we have

δ log A =
∫ 1

0
[I − t (I − A)]−1δA[I − t (I − A)]−1 dt.
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Proof. We expand log A as

log A = log(I − (I − A)) = −
∞∑

n=1

(I − A)n

n
.

Then

δ log A =
∞∑

n=1

n−1∑
m=0

(I − A)mδA(I − A)n−m−1

n

=
∞∑

n′=0

∞∑
m=0

(I − A)mδA(I − A)n
′

n′ + m + 1
,

where we have let n′ = n − m − 1. Noting the elementary integral,∫ 1

0
tn

′+mdt = 1

n′ + m + 1
,

we find

δ log A =
∫ 1

0

∞∑
n′=0

∞∑
m=0

[t (I − A)]mδA[t (I − A)]n
′
dt

=
∫ 1

0

∞∑
m=0

[t (I − A)]mδA

∞∑
n′=0

[t (I − A)]n
′
dt

=
∫ 1

0
[I − t (I − A)]−1δA[I − t (I − A)]−1 dt

as required. �

We use this lemma with A = ρ, where ρ is a density matrix. Since ρ is Hermitian, we
can choose a basis in which ρ = diag{λ1, . . . , λn}. We can apply this lemma if 0 < λi < 1
for all i. Note that the state |M4〉 has this property. If λi �= λj , we have

(δ log ρ)ij =
∫ 1

0

δik

1 − t (1 − λi)
δρkl

δlj

1 − t (1 − λj )
dt

=
∫ 1

0

(
X

1 − t (1 − λi)
+

Y

1 − t (1 − λj )

)
δρij dt,

where X = 1−λi

λj −λi
and Y = 1−λj

λi−λj
. Hence, for λi �= λj ,

(δ log ρ)ij = 1

λj − λi

log

(
λj

λi

)
δρij . (9)

If λi = λj , then

(δ log ρ)ij =
∫ 1

0

δρij

(1 − t (1 − λi))2
dt

= δρij

λi

. (10)

(This formula can also be obtained by letting λj → λi in (9).) We now apply these formulae
to the variation δ log ρXY .

To ease the notation we let δρAB = (
a

(1)
ij

)
, δρAC = (

a
(2)
ij

)
and δρAD = (

a
(3)
ij

)
. We

will use the basis S = {|O〉, |I 〉, |+〉, |−〉} = {|00〉, |11〉, |�+〉, |�−〉}, where |�±〉 = 2−1/2

(|10〉 − |01〉). Thus, for example, a
(1)
OI = 〈O|δρAB |I 〉. Since λ1 = λ2 = λ3 = 1/6 and
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λ4 = 1/2 for each ρAY , we have, by applying (9) and (10),

tr(δρABδ log ρAB) =
∑
ij

Kij

∣∣a(1)
ij

∣∣2
,

tr(δρACδ log ρAC) =
∑
ij

Kij

∣∣a(2)
ij

∣∣2
,

tr(δρADδ log ρAD) =
∑
ij

Kij

∣∣a(3)
ij

∣∣2
,

where

K =




6 6 6 3 log 3
6 6 6 3 log 3
6 6 6 3 log 3

3 log 3 3 log 3 3 log 3 2


 .

In order to proceed further, we need to explicitly parameterize the variations |δ�〉. Thus, we
write

|δ�〉 = ε0000|0000〉 + ε1111|1111〉 + ε0011|0011〉 + ε1100|1100〉 + ω(ε1010|1010〉 + ε0101|0101〉)
+ ω2(ε1001|1001〉 + ε0110|0110〉)
+ ε0111|0111〉 + ε1011|1011〉 + ε1101|1101〉 + ε1110|1110〉
+ z(|1000〉 + |0100〉 + |0010〉 + |0001〉).

Note that we have included only one term with ‘three 0’s’ out of four possible terms. This is
because all other terms can be eliminated by local unitary transformations to first order. We
derive additional constraints on the variations by noting that if the effect of the variation is to
change the relative phase in any one of the qubits, then our new state |ψ ′〉 is locally equivalent
to |M4〉. Let us write

ε0011 − ε1100 = x1 + iy1, ε1100 + ε0011 = X1 + iY1,

ε0101 − ε1010 = x2 + iy2, ε1010 + ε0101 = X2 + iY2,

ε0110 − ε1001 = x3 + iy3, ε1001 + ε0110 = X3 + iY3.

The first-order variation in the relative phase within the first qubit results in the change in
y1 + y2 + y3. Similarly, the phase variations in the second and third qubits change the values
of −y1 + y2 + y3 and y1 − y2 + y3, respectively. Hence, for any variation, we can always find
an equivalent variation satisfying

y1 = y2 = y3 = 0 (11)

by adjusting these phases. In the same way we find that an overall change of phase,
|M4〉 → eiθ |M4〉, can be used to impose the condition

Y1 + Y2 + Y3 = 0. (12)

Thus, we have 21 real parameters (after imposing the normalization condition) in our space of
variations. Since the dimensionality of the space of locally inequivalent states is 18 (see, e.g.,
[16]) in a neighbourhood of a generic state, three dimensions are redundant. This discrepancy
is due to the fact that the state |M4〉 remains unchanged if all qubits are transformed by the same
SU(2) matrix; thus, the dimensionality of the orbit of the local unitary transformations of the
state |M4〉 is 10, which is smaller than the dimensionality of this orbit for a generic state by 3.
We have eliminated all variations that reduce to infinitesimal local unitary transformations,
but the set of physically equivalent variations is generically three dimensional. It would be
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possible to eliminate this redundancy by using canonical forms [14, 15] though we have chosen
not to do so.

With the condition (11) imposed, the quantity P defined by (8) can be written as

P = P1 + P2 + P3 + P4,

where

P1 = 12
3∑

α=1

∣∣a(α)
OI

∣∣2 − 3 log 3(|ε0000|2 + |ε1111|2), (13)

P2 =
3∑

α=1

[
12

(∣∣a(α)
I+

∣∣2
+

∣∣a(α)
O+

∣∣2)
+ 6 log 3

(∣∣a(α)
I−

∣∣2
+

∣∣a(α)
O−

∣∣2)]
− 3 log 3(|ε0111|2 + |ε1011|2 + |ε1101|2 + |ε1110|2 + 4|z|2), (14)

P3 = 6 log 3
3∑

α=1

∣∣a(α)
+−

∣∣2 − 3

2
log 3

(
x2

1 + x2
2 + x2

3

)
, (15)

P4 =
3∑

α=1

[
6
(∣∣a(α)

OO

∣∣2
+

∣∣a(α)
II

∣∣2
+

∣∣a(α)
++

∣∣2)
+ 2|a(α)

−−|2] − 3

2
log 3

3∑
α=1

(
X2

α + Y 2
α

)
. (16)

We will show that (i) P1 > 0 if either ε0000 or ε1111 is nonzero, (ii) P2 > 0 if any of
ε0111, ε1011, ε1101, ε1110 or z is nonzero, (iii) P3 > 0 if any of xα’s is nonzero and (iv) P4 > 0
if any or Xα’s or Yα’s is nonzero. This will imply that P is positive definite.

4.2.1. Positivity of P1. The only terms relevant here are a
(α)
OI ’s. These are given by

√
6a

(1)
OI = 〈O|δρAB |I 〉 = 〈δψ |II 〉 + 〈OO|δψ〉 = ε1111 + ε0000,√

6a
(2)
OI = 〈O|δρAC |I 〉 = ω〈δψ |II 〉 + ω〈OO|δψ〉 = ωε1111 + ωε0000,√

6a
(3)
OI = 〈O|δρAD|I 〉 = ω〈δψ |II 〉 + ω〈OO|δψ〉 = ωε1111 + ωε0000.

Thus we have
3∑

α=1

∣∣a(α)
OI

∣∣2 = 1

2
(|ε0000|2 + |ε1111|2).

Hence by (13)

P1 = (6 − 3 log 3)(|ε0000|2 + |ε1111|2),
which is positive if either ε0000 or ε1111 is nonzero.

4.2.2. Positivity of P2. We find the relevant a
(1)
ij ’s as

√
6a

(1)
I+ = − 1√

2
(ε1101 + ε1110) +

√
2z,

√
6a

(1)
I− = −

√
3
2 i(ε1110 − ε1101),

√
6a

(1)
O+ = 1√

2
(ε0111 + ε1011) −

√
2z,

√
6a

(1)
O− = 1√

2
(ε1011 − ε0111).

Hence,

12
∣∣a(1)

I+

∣∣2
+ 6 log 3

∣∣a(1)
I−

∣∣2 = |ε1101 + ε1110 − 2z|2 + 3
2 log 3|ε1101 − ε1110|2,

12
∣∣a(1)

O+

∣∣2
+ 6 log 3

∣∣a(1)
O−

∣∣2 = |ε1011 + ε0111 − 2z|2 + 1
2 log 3|ε1011 − ε0111|2.
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The corresponding quantities involving a
(2)
ij ’s and a

(3)
ij can be obtained similarly as follows:

12
∣∣a(2)

I+

∣∣2
+ 6 log 3

∣∣a(2)
I−

∣∣2 = |ε1011 + ε1110 − 2ω2z|2 + 3
2 log 3|ε1011 − ε1110|2,

12
∣∣a(2)

O+

∣∣2
+ 6 log 3

∣∣a(2)
O−

∣∣2 = |ε1101 + ε0111 − 2ω2z|2 + 1
2 log 3|ε1101 − ε0111|2,

12
∣∣a(3)

I+

∣∣2
+ 6 log 3

∣∣a(3)
I−

∣∣2 = |ε1011 + ε1101 − 2ωz|2 + 3
2 log 3|ε1011 − ε1101|2,

12
∣∣a(3)

O+

∣∣2
+ 6 log 3

∣∣a(3)
O−

∣∣2 = |ε1110 + ε0111 − 2ωz|2 + 1
2 log 3|ε1110 − ε0111|2.

From these equations we find

P2 = (
1 − 1

2 log 3
)
(|ε0111 + ε1011|2 + |ε0111 + ε1101|2 + |ε0111 + ε1110|2)

+
(
1 − 1

2 log 3
)
(|ε1011 + ε1101|2 + |ε1011 + ε1110|2 + |ε1101 + ε1110|2)

+ log 3(|ε1011 − ε1101|2 + |ε1011 − ε1110|2 + |ε1101 − ε1110|2) + 24
(
1 − 1

2 log 3
) |z|2.

It is clear that the right-hand side is positive unless ε0111, ε1011, ε1101, ε1110 and z all vanish2.

4.2.3. Positivity of P3. We have

2
√

6a
(1)
+− = −2(x2 + x3) −

√
3i(x2 − x3),

and a
(2)
+− and a

(3)
+− are obtained from this by cyclic permutations 2 → 3 → 1 and 3 → 2 → 1,

respectively. Hence,∣∣a(1)
+−

∣∣2
+

∣∣a(2)
+−

∣∣2
+

∣∣a(3)
+−

∣∣2 = 1
12

(
7x2

1 + 7x2
2 + 7x2

3 + x2x3 + x3x1 + x1x2
)
.

Thus, P3 given by (15) is

P3 = log 3

2

(
4x2

1 + 4x2
2 + 4x2

3 + x2x3 + x3x1 + x1x2
)
,

which is positive if x1, x2 or x3 is nonzero.

4.2.4. Positivity of P4. We have√
6a

(1)
OO = ε0011 + ε0011 = X1 + x1,

√
6a

(1)
II = ε1100 + ε1100 = X1 − x1.

Hence

6
∣∣a(1)

OO

∣∣2
+ 6

∣∣a(1)
II

∣∣2 = 2
(
X2

1 + x2
1

)
.

Similarly,

6
∣∣a(2)

OO

∣∣2
+ 6

∣∣a(2)
II

∣∣2 = 2
(
X2

2 + x2
2

)
, 6

∣∣a(3)
OO

∣∣2
+ 6

∣∣a(3)
II

∣∣2 = 2
(
X2

3 + x2
3

)
.

Thus,

6
3∑

α=1

(∣∣a(α)
OO

∣∣2
+

∣∣a(α)
II

∣∣2) � 2
3∑

α=1

X2
α. (17)

The remaining ‘diagonal terms’ are

−
√

6a(1)
++ = Re{ω(ε1010 + ε0101) + ω(ε0110 + ε1001)},

−
√

2a
(1)
−− = Im{ω(ε1010 + ε0101) − ω(ε0110 + ε1001)}.

2 The expression for P2 is not symmetric under permutations of four qubits involving the first qubit. However,
δ2E2 itself is symmetric under such permutations thanks to the contribution from FAB + FAC + FAD (which we
have discarded because it is positive definite). This must be the case because the average two-partite von Neumann
entanglement entropy E2 has this symmetry.
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The coefficients a
(2)
++ and a

(2)
−−

(
a

(3)
++ and a

(3)
−−

)
are obtained from the expressions for a

(1)
++ and

a
(1)
−− by interchanging the second and third (fourth) qubits. Remembering the definitions

ε1010 + ε0101 = X2 + iY2 and ε1001 + ε0110 = X3 + iY3, we obtain

6
∣∣a(1)

++

∣∣2
+ 2|a(1)

−−|2 = X2
2 + Y 2

2 + X2
3 + Y 2

3 + 2(X2X3 − Y2Y3).

We find similarly

6
∣∣a(2)

++

∣∣2
+ 2|a(2)

−−|2 = X2
3 + Y 2

3 + X2
1 + Y 2

1 + 2(X3X1 − Y3Y1),

6
∣∣a(3)

++

∣∣2
+ 2|a(3)

−−|2 = X2
1 + Y 2

1 + X2
2 + Y 2

2 + 2(X1X2 − Y1Y2).

By combining these formulae and (17) with the definition (16) of P4, we have

P4 �
(
4 − 3

2 log 3
) (

X2
1 + X2

2 + X2
3

)
+ 2(X2X3 + X3X1 + X1X2)

+
(
2 − 3

2 log 3
) (

Y 2
1 + Y 2

2 + Y 2
3

) − 2(Y2Y3 + Y3Y1 + Y1Y2).

Finally, the use of the condition Y1 + Y2 + Y3 = 0 leads to

P4 � [(X2 + X3)
2 + (X3 + X1)

2 + (X1 + X2)
2]

+
(
2 − 3

2 log 3
) (

X2
1 + X2

2 + X2
3

)
+ 3(2 − log 3)

(
Y 2

1 + Y1Y2 + Y 2
2

)
.

Thus, P4 > 0 unless Xα’s and Yα’s all vanish. This completes the proof that δ2E2 at |M4〉
is negative definite3. Hence, the state |M4〉 indeed gives a local maximum of the average
two-partite von Neumann entanglement entropy.

Acknowledgments

We would like to thank Tony Sudbery for numerous helpful conversations and one of the
referees for suggesting that we comment on the bipartite entanglement of the state.

References

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge
University Press)

[2] Plenio M B and Virmani S 2007 Quantum Inf. Comput. 7 1 (for a detailed review of entanglement measures see
references therein)

[3] Schlienz J and Mahler G 1996 Phys. Lett. A 224 39
[4] Higuchi A and Sudbery A 2000 Phys. Lett. A 273 213
[5] Yukalov V I 2003 Phys. Rev. Lett. 90 167905
[6] Biswas A and Agarwal G S 2003 Phys. Rev. A 68 054303
[7] Brown I D, Stepney S, Sudbery A and Braunstein S L 2006 J. Phys. A: Math. Gen. 38 1119
[8] Verstraete F, Dehaene J, De Moor B and Verschelde H 2002 Phys. Rev. A 65 052112
[9] Links J, Barjaktarevic J P, Milburn G J and McKenzie R H 2005 LANL Preprint quant-ph/0506071

[10] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[11] Osborne T and Verstraete F 2006 Phys. Rev. Lett. 96 220503
[12] Peres A 1996 Phys. Rev. Lett. 77 1413
[13] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
[14] Carteret H, Sudbery A and Higuchi A 2000 J. Math. Phys. 41 7932
[15] Acin A, Andrianov A, Jane E and Tarrach R 2001 J. Phys. A: Math. Gen. 34 6725
[16] Linden N and Popescu S 1998 Fortschr. Phys. 46 567

3 It is possible to prove δ2E2 < 0 without the condition Y1 + Y2 + Y3 = 0. In that case, one needs to evaluate the
positive contribution FAB + FAC + FAD to

∑
Y tr[σAY log ρAY ].

http://dx.doi.org/10.1016/S0375-9601(96)00803-1
http://dx.doi.org/10.1016/S0375-9601(00)00480-1
http://dx.doi.org/10.1103/PhysRevLett.90.167905
http://dx.doi.org/10.1103/PhysRevA.68.054303
http://dx.doi.org/10.1088/0305-4470/38/5/013
http://dx.doi.org/10.1103/PhysRevA.65.052112
http://www.arxiv.org/abs/quant-ph/0506071
http://dx.doi.org/10.1103/PhysRevA.61.052306
http://dx.doi.org/10.1103/PhysRevLett.96.220503
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1063/1.1319516
http://dx.doi.org/10.1088/0305-4470/34/35/301
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<567::AID-PROP567>3.0.CO;2-H

	1. Introduction
	2. Varying the entropy
	3. An alternative highly entangled state
	4. The second-order variations
	4.1. The first two terms in the expansion
	4.2. The third term in the expansion

	Acknowledgments
	References

